Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Fast Air-Path Modeling for Stiff Components

2022-03-29
2022-01-0410
Development of propulsion control systems frequently involves large-scale transient simulations, e.g. Monte Carlo simulations or drive-cycle optimizations, which require fast dynamic plant models. Models of the air-path—for internal combustion engines or fuel cells—can exhibit stiff behavior, though, causing slow numerical simulations due to either using an implicit solver or sampling much faster than the bandwidth of interest to maintain stability. This paper proposes a method to reduce air-path model stiffness by adding an impedance in series with potentially stiff components, e.g. throttles, valves, compressors, and turbines, thereby allowing the use of a fast-explicit solver. An impedance, by electrical analogy, is a frequency-dependent resistance to flow, which is shaped to suppress the high-frequency dynamics causing air-path stiffness, while maintaining model accuracy in the bandwidth of interest.
Journal Article

Unified Power-Based Analysis of Combustion Engine and Battery Electric Vehicle Energy Consumption

2022-03-29
2022-01-0532
The previously developed power-based fuel consumption theory for Internal Combustion Engine Vehicles (ICEV) is extended to Battery Electric Vehicles (BEV). The main difference between the BEV model structure and the ICEV is the bi-directional character of traction motors and batteries. A traction motor model was developed as a bi-linear function of positive and negative traction power. Another difference is that the accessories and cabin heating are powered directly from the battery, and not from the powertrain. The resulting unified model for ICEV and BEV energy consumption has linear terms proportional to positive and negative traction power, accessory power, and overhead, in varying proportions. Compared to the ICEV, the BEV powertrain has a high marginal efficiency and low overhead. As a result, BEV energy consumption data under a wide range of driving conditions are mainly proportional to net traction power, with only a small offset.
Technical Paper

On the Utility of Ammonia Sensors for Diesel Emissions Control

2022-03-29
2022-01-0549
This paper analyzes the use of an ammonia sensor for feedback control in diesel exhaust systems. We build our case around the specific example of the heavy duty transient cycle, and an exhaust system with an SCR catalyst, a single urea injector and an upstream and downstream NOx sensor. A key component in our analysis is the inclusion of the tolerance of the ammonia sensor. We show that with the current understanding of the sensor tolerance, the ammonia sensor has limited benefit for controls.
Journal Article

Laser-Based In-Exhaust Gas Sensor for On-Road Vehicles

2022-03-29
2022-01-0535
A novel laser-absorption gas sensing apparaOn-vehicle Testing at VERtus capable of measuring NO directly within vehicle exhaust was developed and tested. The sensor design was enabled by key advances in the construction of optical probes that are sufficiently compact for deployment in real-world exhaust systems and can survive the harsh, high-temperature, and strongly vibrating environment typical of exhaust streams. Prototype test campaigns were conducted at high-temperature flow facilities intended to simulate exhaust gas conditions and within the exhaust of vehicles mounted on a chassis dynamometer. Results from these tests demonstrated that the sensor prototype is fundamentally free of cross-interference with competing species in the exhaust stream, can achieve a 1 ppmv NO detection limit, and can be operated across the full range of thermodynamic conditions expected for typical vehicle exhausts.
Journal Article

Numerical Modelling of Coolant Filling and De-aeration in a Battery Electric Vehicle Cooling System

2022-03-29
2022-01-0775
Trapped air bubbles inside coolant systems have adverse effect on the cooling performance. Hence, it is imperative to ensure an effective filling and de-aeration of the coolant system in order to have less air left before the operation of the coolant system. In the present work, a coolant/air multiphase VOF method was utilized using the commercial CFD software SimericsMP+® to study the coolant filling and subsequent de-aeration process in a Battery Electric Vehicle (BEV) cooling system. First, validations of the numerical simulations against experiments were performed for a simplified coolant recirculation system. This system uses a tequila bottle for de-aeration and the validations were performed for different coolant flow rates to examine the de-aeration efficiency. A similar trend of de-aeration was captured between simulation and experimental measurement.
Technical Paper

Development of a PN Surrogate Model Based on Mixture Quality in a GDI Engine

2021-09-05
2021-24-0013
A novel surrogate model is presented, which predicts the engine-out Particle Number (PN) emissions of a light-duty, spray-guided, turbo-charged, GDI engine. The model is developed through extensive CFD analysis, carried out using the Siemens Simcenter STAR-CD, and considers a range of part-load operating conditions and single-variable sweeps where control parameters such as start of injection and injection pressure are varied in isolation. The work is attached to the Ford-led APC6 DYNAMO project, which aims to improve efficiency and reduce harmful emissions from the next generation of gasoline engines. The CFD work focused on the air exchange, fuel spray and mixture preparation stages of the engine cycle. A combined Rosin-Rammler and Reitz-Diwakar model, calibrated over a wide range of injection pressure, is used to model fuel atomization and secondary droplets break-up.
Technical Paper

A Multi-Physics Approach to Predict High Frequency NVH in Oil Pump Drives

2021-08-31
2021-01-1099
NVH problems are often the result of mechanisms that originate through complex interactions between different physical domains (flow, structural/mechanical, control logic, etc.). Parallel-shaft spur gears subject to light torque loading caused by the dynamic pressure fluctuation of the oil used in engine accessory or transmission pump drives are likely to exhibit unusual gear whine associated with higher order meshing harmonics, even when the tooth profile has a high-quality grade finishing. Therefore, accurate integrated models are becoming a requirement to solve modern NVH problems.
Journal Article

Circumferential Variation of Noise at the Blade-Pass Frequency in a Turbocharger Compressor with Ported Shroud

2021-08-31
2021-01-1044
The ported shroud casing treatment for turbocharger compressors offers a wider operating flow range, elevated boost pressures at low compressor mass flow rates, and reduced broadband whoosh noise in spark-ignition internal combustion engine applications. However, the casing treatment elevates tonal noise at the blade-pass frequency (BPF). Typical rotational speeds of compressors employed in practice push BPF noise to high frequencies, which then promote multi-dimensional acoustic wave propagation within the compressor ducting. As a result, in-duct acoustic measurements become sensitive to the angular location of pressure transducers on the duct wall. The present work utilizes a steady-flow turbocharger gas stand featuring a unique rotating compressor inlet duct to quantify the variation of noise measured around the duct at different angular positions.
Technical Paper

High-Cycle Fatigue of Polyamide-6,6 and Glass Fiber-Based Short Fiber Composite Using Finite Element Analysis

2021-05-11
2021-01-5051
As the automotive industry strives for an increased fuel economy, lightweighting is a key factor and can be realized through composite materials. Composites have better strength-to-weight ratio as compared to metals. In this paper, static and fatigue analysis is performed on an oil pan made of polyamide-6,6 and 50% glass fiber (PA66-GF50). PA66 has a glass transition temperature of 170°C; therefore, it is suitable for automotive applications where the operating range is −40°C to 150°C. Long glass fiber (LGF) composite has an aspect ratio of 30-50 in the oil pan. Fibers break in the molding process but are still considerably longer than with conventionally compounded short glass fiber (SGF) composite, where the aspect ratio of fiber is between 10 and 20. However, the computer-aided engineering (CAE) procedure for life prediction of short glass fiber-reinforced (SGFR) plastic versus LGF-reinforced plastic is the same.
Technical Paper

Exponential Trajectory Tracking Passivity-Based Control for Permanent-Magnet Synchronous Motors

2021-04-09
2021-01-5047
In this paper, a novel methodology of nonlinear control is used, and a passivity-based control of contractive port-controlled Hamiltonian (PCH) systems is applied to a permanent magnet synchronous motor (PMSM). This methodology, also called “tIDA-PBC” (Trajectory Injection and Damping Assignment—Passivity-Based Control), uses passivity-based control of PCH systems “IDA-PBC” and exploits the properties of contractive Hamiltonian systems, resulting in a closed loop with its contractive system desired dynamics, thus obtaining an exponential trajectory tracking without relying on the error coordinates. In this system, a few steps are proposed in order to divide and modularize the methodology so it can be redesigned or reapplied in other systems by the reader. First, we define the model and set the way to solve the “matching equation.” Then the feasible and reference trajectories are obtained.
Technical Paper

Assessment of Exhaust Actuator Control at Low Ambient Temperature Conditions

2021-04-06
2021-01-0681
Exhaust sensors and actuators used in automotive applications are subjected to wide variety of operating ambient conditions , the performance of these actuators is challenging especially at cold ambient operating conditions, active exhaust tuning valves with position sensors are used to adjust the sound levels, or noise, vibration and harshness (NVH) from a control unit within the vehicle that leads to an improved driving experience wherein the driver selects their preferred sound levels. However, the operating behavior is crucially influenced by the characteristics of the drive cycle and ambient temperature. The study in this paper is intended to evaluate the icing formation at the start of drive cycle and at different ambient temperature conditions. The test data were obtained through real road and chassis dyno testing at different ambient conditions.
Technical Paper

Sensor Fusion Approach for Dynamic Torque Estimation with Low Cost Sensors for Boosted 4-Cylinder Engine

2021-04-06
2021-01-0418
As the world searches for ways to reduce humanity’s impact on the environment, the automotive industry looks to extend the viable use of the gasoline engine by improving efficiency. One way to improve engine efficiency is through more effective control. Torque-based control is critical in modern cars and trucks for traction control, stability control, advanced driver assistance systems, and autonomous vehicle systems. Closed loop torque-based engine control systems require feedback signal(s); indicated mean effective pressure (IMEP) is a useful signal but is costly to measure directly with in-cylinder pressure sensors. Previous work has been done in torque and IMEP estimation using crankshaft acceleration and ion sensors, but these systems lack accuracy in some operating ranges and the ability to estimate cycle-cycle variation.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Technical Paper

Real-Time Hydro-Mechanical Transmission System Simulations for Model-Guided Assessment of Complex Shift Sequence

2021-04-06
2021-01-0715
Model-guided development of drivetrain control and calibration is a key enabler of robust and efficient vehicle design process. A number of CAE tools are available today for modeling hydro-mechanical systems. Automatic transmission behaviors are well understood to effectively tune the model parameters for targeted applications. Drivetrain models provide physical insight for understanding the effects of component interactions on system behaviors. They are also widely used in HIL/SIL environments to debug control strategies. Nonetheless, it is still a challenge to predict shift quality, especially during a sequence of multiple events, with enough accuracy to support model-guided control design and calibration. The inclusion of hydraulic circuits in simulation models often results in challenges for numerical simulation.
Journal Article

The Impact of Plastic pH on Silicone Elastomer Compression Set

2021-04-06
2021-01-0355
Sealing applications in electrified vehicle powertrains present a unique set of boundary conditions when contrasted with typical transmission or internal combustion engine applications, including changes in fluidic exposure, operating pressure, temperature profiles, etc. This novel powertrain environment opens the gasket material spectrum to elastomers uncommon in standard powertrain joints, which allows for more optimized, higher-value sealing solutions. However, this also introduces new risks, including the risk of excessive compression set in silicone elastomers due to acidity in adjacent plastics (which can result from shifting to non-halogenated flame retardants from halogenated flame retardants). To understand this phenomenon, compression set testing was conducted with plastic resins ranging from pH = 3.4 to pH = 7.3 and three high-consistency rubber (HCR) silicone elastomers.
Journal Article

Torque Converter Launch and Lock with Multi-Input Multi-Output Control

2021-04-06
2021-01-0422
A torque converter is a type of fluid coupling device used to transfer engine power to the gearbox and driveline. A bypass clutch equipped in a torque converter assembly is a friction element which when fully engaged, can directly connect the engine to the gearbox. The torque converter is an important launch device in an automatic transmission which decouples engine speed from gearbox input speed while providing torque multiplication to drive the vehicle. During partial pedal launch, it is desired to engage the bypass clutch early and reduce the converter slippage in order to reduce power loss and achieve better fuel economy. However, engaging the bypass clutch early and aggressively may disturb the wheel torque and cause unpleasant driving experiences. This paper describes a multi-input multi-output (MIMO) control method to coordinate both engine and converter bypass clutch to simultaneously deliver desired wheel torque and reduce converter slippage.
Journal Article

Quantitative Analysis of Gasoline Direct Injection Engine Emissions for the First 5 Firing Cycles of Cold Start

2021-04-06
2021-01-0536
A series of cold start experiments using a 2.0 liter gasoline turbocharged direct injection (GTDI) engine with custom controls and calibration were carried out using gasoline and iso-pentane fuels, to obtain the cold start emissions profiles for the first 5 firing cycles at an ambient temperature of 22°C. The exhaust gases, both emitted during the cold start firing and emitted during the cranking process right after the firing, were captured, and unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start were analyzed and quantified. The HCs emitted during gasoline-fueled cold starts was found to reduce significantly as the engine cycle increased, while CO and CO2 emissions were found to stay consistent for each cycle. Crankcase ventilation into the intake manifold through the positive-crankcase ventilation (PCV) valve system was found to have little effect on the emissions results.
Journal Article

Automatic Transmission Upshift Control Using a Linearized Reduced-Order Model-Based LQR Approach

2021-04-06
2021-01-0697
Automatic transmission (AT) upshift control performance in terms of shift duration and comfort can be improved during the inertia phase by coordinating the off-going clutch together with oncoming clutch and engine torque. The performance improvement is highest in low gear shifts (i.e., for high ratio steps), which are typically performed with open torque converter. In this paper, a discrete-time, linear quadratic regulation (LQR) is applied during the upshift inertia phase, as it provides an optimal multi-input/multi-output control action with respect to the prescribed cost function. The LQR law is based on a reduced-order drivetrain model, which is applicable to actual transmissions characterized by a limited number of available state measurements. The reduced-order model includes the linearized torque converter model. The shift duration is ensured by precise tracking of a linear-like oncoming clutch slip speed reference profile.
Journal Article

Machine Learning Approach for Constructing Wet Clutch Torque Transfer Function

2021-04-06
2021-01-0712
A wet clutch is an established component in a conventional powertrain. It also finds a new role in electrified systems. For example, a wet clutch is utilized to couple or decouple an internal combustion engine from an electrically-driven drivetrain on demand in hybrid electric vehicles. In some electrical vehicle designs, it provides a means for motor speed reduction. Wet clutch control for those new applications may differ significantly from conventional strategy. For example, actuator pressure may be heavily modulated, causing the clutch to exhibit pronounced hysteresis. The clutch may be required to operate at a very high slip speed for unforeseen behaviors. A linear transfer function is commonly utilized for clutch control in automating shifting applications, assuming that clutch torque is proportional to actuator pressure. However, the linear model becomes inadequate for enabling robust control when the clutch behavior becomes highly nonlinear with hysteresis.
Technical Paper

Characterization and Modeling of Wet Clutch Actuator for High-Fidelity Propulsion System Simulations

2020-04-14
2020-01-1414
Innovations in mobility are built upon a management of complex interactions between sub-systems and components. A need for CAE tools that are capable of system simulations is well recognized, as evidenced by a growing number of commercial packages. However impressive they are, the predictability of such simulations still rests on the representation of the base components. Among them, a wet clutch actuator continues to play a critical role in the next generation propulsion systems. It converts hydraulic pressure to mechanical force to control torque transmitted through a clutch pack. The actuator is typically modeled as a hydraulic piston opposed by a mechanical spring. Because the piston slides over a seal, some models have a framework to account for seal friction. However, there are few contributions to the literature that describe the effects of seals on clutch actuator behaviors.
X